If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.

This handout is for reference only. Non-essential images have been removed for your convenience. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.

No part of the materials available through the continued.com site may be copied, photocopied, reproduced, translated or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written consent of continued.com, LLC. Any other reproduction in any form without such written permission is prohibited. All materials contained on this site are protected by United States copyright law and may not be reproduced, distributed, transmitted, displayed, published or broadcast without the prior written permission of continued.com, LLC. Users must not access or use for any commercial purposes any part of the site or any services or materials available through the site.
Technical issues with the Recording?

- Clear browser cache using these instructions
- Switch to another browser
- Use a hardwired Internet connection
- Restart your computer/device

Still having issues?

- Call 800-242-5183 (M-F, 8 AM-8 PM ET)
- Email customerservice@SpeechPathology.com
Respiratory Muscle Strength Training and Speech-Language Pathologists: Part 2
Denise Dougherty, MA, SLP

Moderated by:
Amy Hansen, MA, CCC-SLP, Managing Editor, SpeechPathology.com

Need assistance or technical support?
- Call 800-242-5183
- Email customerservice@SpeechPathology.com
- Use the Q&A pod
How to earn CEUs

- Must be logged in for full time requirement
- Log in to your account and go to Pending Courses
- Must pass 10-question multiple-choice exam with a score of 80% or higher
 - Within 7 days for live webinar; within 30 days of registration for recorded/text/podcast formats
- Two opportunities to pass the exam

Respiratory Muscle Strength Training and Speech Pathologists Part 2

Denise Dougherty, MA, CCC-SLP
• **Presenter Disclosure:** Financial: Denise Dougherty was paid an honorarium by SpeechPathology.com for this presentation. She owns/operates a private practice in Pennsylvania. Nonfinancial: Denise has no relevant nonfinancial relationships to disclose.

• **Content Disclosure:** This learning event does not focus exclusively on any specific product or service.

• **Sponsor Disclosure:** This course is presented by SpeechPathology.com.

Other Disclosures

- Aspire
- Anatomical Images used with Permission
- Kenhub.com
- View Images at www.kenhub.com
Learning Outcomes

As a result of this course, participants will be able to:

- List tools available for RMST.
- Describe the protocols for treatment for inspiratory and expiratory muscle strength training.
- Identify contraindications for treatment.

Course Description

- Part two discusses available tools to use for RMST. Protocols for inspiratory and expiratory muscle strength training will be reviewed as well as contraindications for use.
Cardiorespiratory System (6)

- Respiratory Circuit
 - lungs, airways, pulmonary vasculature
- Cardiac Circuit
 - Heart and systemic circulation
- Regulatory elements ensure adequate blood oxygenation during rest and exercise, while integrating systemic and pulmonary circulations
- Pharmacological interventions may briefly alleviate symptoms but won’t solve problem
- Only intervention that makes a long-term difference
 - RMT for inspiration and expiration
Tools Patients May Use

Incentive spirometer

- Provided to pts. after surgery or admission w pulmonary diagnosis

Positive Expiratory Pressure devices - PEP

- Provided to pts. w pulmonary conditions
- Assists w clearance of secretions

Respiratory Muscle Training – IMST, EMST, Breather

- Provide complete resistance respiratory muscle strength training, like skeletal muscle training

Incentive Spirometer (1)

- Helps lungs recover after surgery or lung illness
 - become weak after prolonged disuse.
- Conflicting results on benefits - some evidence
 - Improves lung function
 - Reduces mucus buildup
 - Strengthens lungs during extended rest
 - Lowers chance of lung infections

Used w permission TalkTools
Incentive Spirometer

- Sustained maximal inspiration or SMI
- Part of bronchial hygiene tx
- Mimic natural sigh/yawn by encouraging pt. to take long, slow, deep breaths
- Provides biofeedback when inhalation sustained for min. of 3 sec.

Objectives
- Increase transpulmonary pressure inspiratory volumes
- Activate inspiratory muscles to some extent
- Reestablish or simulate normal pattern of pulmonary inflation

Incentive spirometer

- Does not provide RM strength training
- No workload on muscles during inspiration
- Prevents post operative complications after surgery
- Effectiveness not supported by evidence

Guidelines changing
- Moving away from spirometer to prevent post op pulmonary complications
PEP

- Breathe thru mouthpiece or mask
- Air flows freely on inhalation then exhale against resistance
- Exhalation against resistance takes about 4 times longer than inhalation

Benefits

- Improve airway clearance
- Air gets behind mucus and assists in moving it out of lungs and airway
- Assists in keeping airways open
- Some devices have additional oscillatory function to improve mucus mobilization or OPEP

Flutter – Aptalis Pharma*
Acapella Flutter Valve – Smiths Medical*
Aerobika OPEP – Monaghan Medical*
V-PEP – D R Burton Healthcare Products*
Pari O-PEP – Pari Respiratory*
RC-Cornet*
Oscillating PEP

- Vibrations created with exhalation moves mucus from surface of airway
- Mimics beating of cilia
- After blowing through device several times, huff and cough to clear mucus from lungs (2)

Flutter

- Mucus clearance device
- Therapy administered in two stages:
 - Mucus loosening and mobilization
 - Mucus elimination
- Steel ball rolls up/down cone causing air flow vibration
- Gets air behind mucus and moves it from lung, airway walls
- Mimics cilial beat frequency
- Tx ends when no more mucus can be expectorated (3)(4)
Acapella Flutter Valve

- Steel ball near valve
- As pt. breathes into device, ball rattles against valve causing vibrations
- Helps loosen secretions from airways to cough up
- Creates back pressure
- ‘Pop’ alveoli open, helps treat/prevent atelectasis (collapse/closure of lung, alveoli don’t inflate, reduced or absent gas exchange) (5)

Acapella DM Blue

- Less difficult
- For pts. that generate expiratory flow of <15 L/min.
Acapella DH Green

- More difficult
- For pts. that generate expiratory flow of >15 L/min

RC-Cornet

- Facilitates airway clearance
- Exhalation
 - Positive exhalation pressure widens airways
 - Reduces respiratory distress
- Mobilizes bronchial mucus
- Exhaled air used to cleanse airways (3)
Assessments to Document RMW in PT, OT, ST

- Breathing pattern
- Cognitive level
- Borg Scale
- Ventilatory Response Index – VRI
- Maximum phonation time MPT
- Timed up and go TUG
- Swallow function/voice quality
- Vital monitoring

Cognition

- Assess cognitive level - baseline
- Not uncommon for pts. to experience exacerbation of cognitive deficits when pulmonary system is compromised
- Link between respiration, cognitive functions, oxygenation
Allen Cognitive Diagnostic Module (7)

- Occupational Tx
- 35 standardized activity assessments of functional cognition
- Objective measure of cognitive function, develop goals based on what pt. CAN do
- No cognitive level where RMT would be excluded

Dyspnea Scales

- Multiple versions to score shortness of breath during exercise or tasks
- Borg scale Rating of Perceived Exertion (8)
 - Scale from 6 to 20
 - 6 = "no exertion at all" and
 - 20 = "maximal exertion."
 - # that best describes individual's level of exertion during physical activity
 - Also a modified scale 0-10
VRI or Ventilatory Response Index (9)

- Level 0 - count to 15 in 8 sec. in 1 breath
- Level 1 – must take 1 breath during count to 15 in 8 seconds
- Level 2 – must take 2 breaths during count to 15 in 8 seconds
- Level 3 – must take 3 breaths during count to 15 in 8 sec.
- Level 4 – must take 4 breaths during count to 15 in 8 sec

Simple and easy to use – assess phonatory mechanics

- MPT – longest period during which a pt. can sustain phonation of vowel sound – typically /a/ used

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>/a/</td>
<td>13.27</td>
<td>12.67</td>
</tr>
<tr>
<td>/i/</td>
<td>12.45</td>
<td>11.44</td>
</tr>
<tr>
<td>/u/</td>
<td>11.55</td>
<td>10.78</td>
</tr>
<tr>
<td>s/z ratio</td>
<td>1.21</td>
<td>1.19</td>
</tr>
</tbody>
</table>
Tug Test – Times up and Go Test (10)

- Pt w typical footwear, use typical device
- Sit in standard armchair –line on floor 10 ft away from pt.
- "When I say GO I want you to….
- stand up from chair
- walk to line on the floor at your normal pace
- turn
- walk back to chair at your normal pace
- sit down again

Record time in seconds from GO until pt. returned to seated position

Observe

- Slow tentative pace, loss of balance, short strides, little or no arm swing, steadying self on walls, shuffling, not using assistive device properly
- breathing pattern, hurried gait to beat running out of air
- Older adult who takes >12 seconds to complete TUG is at high risk falling
Swallow

- Traditional Bedside Dysphagia Eval
- Coordination of respiration/swallow
- Breathing during swallow because they are unable to complete swallow before they need next breath?
- Ability to produce protective cough if airway protection is needed.
- Pt’s endurance for adequate PO intake

Voice

- Note vocal quality
- Compromised respiratory function w
- Reduced power for voicing may overcompensate by increasing laryngeal tension,
- Speaking on residual air
- Fading voicing capacity as day progresses
- Experience limited verbal communication w even light activity
Train Diaphragmatic Breathing for RMT

- Increased breathing efficiency w improved coordination of respiratory muscles and oxygenation
- Helpful to learn technique supine w HOB elevated at 30-40 degrees
- Breath in thru nose, abdomen pushes out; breathe out thru pursed lips & abdomen falls as it relaxes
- Place hand on abdomen to watch/feel it rise
- Diaphragm used for efficient respirations
- Increase depth of respiration
- Progress w adding technique to standing, ADL's, ambulation

Diaphragmatic Breathing

- Train diaphragmatic breathing before RMT
- Want diaphragmatic breathing for efficiency
- Must have this down before beginning RMT
- Raising chest and shoulders when breathing takes more energy, less efficient
- Tend to breathe like this when we’re tense
- SOB makes us tense so it becomes a cycle
- Get most oxygen w least amt. of effort
Respiratory Muscle Training (6)

- Protocols depend on device used and underlying disorder
- Generally….
- Improving respiratory muscle strength requires regular RMT for at least 3 wks. to observe significant effect
- Training intensity should be moderate to high
- At 50-70% of maximal inspiratory or expiratory pressure
- Typically 1-2 times/day, at least 5 days per week

Lightheaded w RMT?

- Almost everyone gets lightheaded, feel they are hyperventilating
- Need to adjust to increased oxygen and carbon dioxide exchange
- May take 1-2 wks. to subside
- Pause for several minutes, breathing normally, then continue
- If lightheadedness persists, stop and contact your care provider
Coughing w RMT?

- May cough d/t required force working against resistance while exhaling
- Great for airway clearance, so don’t try to suppress it.
- Remove tool until finished coughing.
- Expel any phlegm, secretions rather than swallow

Breather (11)

- First RMT device
- Peg Nicholson invented – “PN” Medical
- Inspiratory and expiratory muscle strength trainer

(q7) (q8)
Breather

- Increases muscle strength with resistance training
- Breathing against resistance activates/strengthens respiratory muscles
- Load muscles with workload and they become stronger (11)
Breather

- Careful evaluation recommended before initiation if:
- active hemoptysis, untreated pneumothorax, esophageal surgery, airway stenosis (true vocal fold mass, vocal fold paralysis in adducted position, subglottic stenosis, etc.), intracranial pressure > 20mm Hg, recent oral, facial or skull trauma / surgery, acute sinusitis, epistaxis, hemodynamic instability, bolus emphysema, tympanic membrane rupture or middle ear pathology (11)

Protocol (11)

- Inhale Settings
 - 1-6

- Exhale Settings
 - 1-5
Protocol

- Rotate dials to setting
 - manage 10 breaths without puffing cheeks or getting out of breath
- Feel like you’re giving 70% effort to get to 10th breath
- Independently increase settings if set of 10 breaths become too easy
- 6 days per week, 2 sessions per day – morning/evening
- 2 sets of 10 full breaths each session
- Session log on website

How do you know when to increase resistance?
- Puffing cheeks – resistance too high or lightheaded
- % of effort is low, bump up and try next level
- Clinical judgment comes into play

- Pt. w trach?
 - Sure – use clinical judgment
 - Tolerate finger occlusion for verbalization?
 - Finger occlude w breather – easy to take hand off if panicky or SOB
 - Great way to work towards Passey Muir, cap trach, eventual discharge trach
Calming Intervention

- Breather as calming intervention
- SOB increases tension
- Turn breather to lowest setting – breath easily through mouthpiece
- Focus on relaxing
- When anxious – use at lowest setting to get breathing under control again

Breather Fit

- Professional athletes, entertainer, professional voice users
- Extend time to fatigue
- Improve cardio performance
- Reduce exercise limiting dyspnea
- Extend lactate threshold – measure to decide exercise intensity in endurance sports
- Strengthen diaphragmatic muscles
EMST 150, 75 Lite

- Pressure threshold handheld calibrated device
- One-way spring-loaded valve
- Adjustable external dial
- Valve blocks flow of air until enough pressure produced
 - Valve won’t open if expiratory force is inadequate
- Valve open and air flows
- Adjust pressure amount
- Range between 24-150 cmH20
- Work at 75% of pt.’s MEP and increase each week (12)
EMST 150 and EMST 75 Lite

- Check w physician before using if
 - Suspect pregnancy
 - Untreated hypertension
 - Recent stroke
 - History of collapsed lung
 - Recent head/neck surgery
 - Untreated gastroesophageal reflux disease (12)

- Turning knob clockwise tightens spring
 - More difficult to blow air out through valve
- Turning counterclockwise loosens spring
 - Easier to blow air out through valve
EMST 150

- Find maximum expiratory strength
- Turn knob – small metal screw at 30
- Take deep breath in, insert EMST mouthpiece in mouth, blow quickly through device until air rushes through and stop

EMST 150

- Easy?
- turn knob clockwise one full turn and repeat
- Unable to move air through?
- turn ¼ turn back or counterclockwise
- continue until you can move air through
- This is your MAX. pressure
- Train 1st wk. at ¼ turn below max pressure
Protocol

- 5 sets of 5 breaths = 25 training breaths
- Rest for 15-30 second minimum between breaths
- Rest for 1 minute between sets
- 5 days a week with 2 rest days
- 5 weeks
- Each week – weeks 2-5
- Turn knob ¼ turn clockwise and train
- Maintenance Training
- 3 days a week, 25 breaths
- 5 sets of 5 breaths

EMST 75 Lite

- Builds breath power
- Lower thresholds for training
- 5-75 cmH20
- Increase strength of expiratory muscles
- After reaching 75 cmH20 may continue with EMST150
EMST 75Lite

- Turn knob counterclockwise until can’t turn any longer
- Take deep breath in, insert EMST mouthpiece in mouth
- Blow quickly through device until air rushes through, then stop
- Follow same steps as for EMST 150

Inspiratory Adaptor

- Turn knob until small metal screw lines up w 30
- Insert EMST 150 into IA 150
- Deep breath in, push all air out of lungs
- Insert IA 150 mouthpiece in mouth
- Inhale forcefully
- Too easy? Turn knob ½ turn clockwise and repeat
- Too hard? Turn knob back ½ turn
IA Protocol

- 5 sets of 5 breaths = 25 training breaths
- 5 days a week w 2 rest days
- 5 weeks

Maintenance
- 3 days a week, 25 breaths
- 5 sets of 5 breaths

End of week 1
- Remove IA 150, increase pressure on EMST 1/8 to ¼ turn clockwise
- Use silver screw as guide

Before Meal?

- Improve cough – need strong expiratory muscles but need inspiratory muscles to draw air in first

- Some pts w dysphagia may prefer to only train exp muscles before meal to be able to effectively cough something out

- Maybe 2 sets of 5 before meal
Monitor!

- Pulse Oximeter
- Monitor for any changes
- Make sure device is cleaned properly
- Device is PATIENT SPECIFIC

Discharge Planning

- Pts less likely to decline if aftercare or some type of discharge plan in place
- Home Exercise Plan HEP
- Restorative Nursing Program RNP
- Functional Maintenance Plan FMP
- Caregiver/Staff education
- Maintain skills they’ve gained
Restorative Nursing - Skilled Nursing Resident

- Restorative nursing program or RNP would be appropriate for discharge in Skilled Nursing setting
- Can be adapted to nursing Functional Maintenance Plan or FMP following restorative services
- Can function as a home exercise program or HEP for pts able to independently complete RMT
- Template for restorative nursing plan or home exercise program

Therapy – Group or Concurrent

- Group – 2-6 pts. at one time doing same or similar activities supervised by one therapist/therapy assistant
- Concurrent therapy – tx of 2 pts. at one time doing different activities supervised by one therapist/therapy assistant
- Can’t be more than 25% of pt's total treatment minutes
- Pts benefit from encouraging, supporting each other within group
- RMT can be done concurrent
Home Health?

- Improve home health pt. outcomes
- Decrease risk of re-hospitalization
- Provide cost effective solution for carryover of home exercise program
- Measurable data to include in OASIS
 - ADL's fall risk, neuro/emotional/behavioral status
 - Pt not as anxious d/t SOB
- Many re-hospitalizations d/t respiratory issues
- Whole team promoting, supporting use of device, but one discipline takes lead

So......RMT......

- Cost effective intervention improves pt. outcomes
- Evidence based approach
- Decreased risk of re-hospitalization d/t exacerbation of symptoms
- Benefits pts. treated by all disciplines
Bibliography

- https://www.physio-pedia.com/Positive_Expiratory_Pressure_(PEP)_Devices
- https://www.respiratorytherapyzone.com/acapella-flutter-valve/

11. www.pnmedical.com