If you are viewing this course as a recorded course after the live webinar, you can use the scroll bar at the bottom of the player window to pause and navigate the course.

This handout is for reference only. It may not include content identical to the PowerPoint. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.
Congenital Heart Defects: An Overview and Impact on Feeding and Development

Rhonda Mattingly, Ed.D, CCC-SLP

Moderated by:
Amy Hansen, MA, CCC-SLP, Managing Editor, SpeechPathology.com

Need assistance or technical support?
- Call 800-242-5183
- Email customerservice@SpeechPathology.com
- Use the Q&A pod
How to earn CEUs

- Must be logged in for full time requirement
- Log in to your account and go to Pending Courses
- Must pass 10-question multiple-choice exam with a score of 80% or higher
 - Within 7 days for live webinar; within 30 days of registration for recorded/text/podcast formats
- Two opportunities to pass the exam

Interested in Volunteering to be a Peer Reviewer?

- APPLY TODAY!
- 3+ years SLP Professional Experience Required
- Contact Amy Natho at anatho@SpeechPathology.com
Congenital Heart Defects: An Overview and Impact on Feeding and Development

Rhonda Mattingly, Ed.D, CCC-SLP

Disclosure

- The presenter receives a salary for her work as an Associate Professor and Director of Clinical Education at the University of Louisville. She also received a stipend from SpeechPathology.com to present this course.
Learner Outcomes

1. Participants will be able to describe 3 characteristics of congenital heart disease.
2. Participants will be able to describe 3 congenital heart disease diagnoses.
3. Participants will be able to identify 3 ways congenital heart disease impacts feeding and/or development.

The Normal Heart
The Valves

- Valves
 - Mitral
 - Tricuspid
 - Aortic
 - Pulmonary

Blood Flow – Super Simplified

- Right side of the heart receives blood from the body
- Right side pumps blood from the body to the lungs to get receive oxygen
- Left side of the heart receives the oxygenated blood and sends it out to the body
- Before each heart beat the heart fills with blood
- The muscle contracts and move the blood along
How the Heart Feeds the Body

- Blood delivers O_2 to the cells of the body
- The cells in the body use the O_2 and that makes carbon dioxide (CO_2)
- CO_2 & other gets carried away in the blood vessels
- In the lungs the CO_2 is removed on exhalation
- On inhalation blood is oxygenated and can be used again

When the Heart Doesn’t Work Well

- Cells do not get the O_2 they need
- CO_2 does not get expelled efficiently
- Everything in the body has to work harder (including the heart!)
- Necessary bodily functions are impaired
Congenital Heart Disease (CHD) Facts

- Most common birth defect
- Occurs in 8:1,000 births
- Diagnosis most often in infancy/early childhood
- Approximately 25% of infants with CHD require invasive treatment/1st year of life

Common Early Symptoms of CHD

- Slow feeding
- Breathlessness
- Irritability
- Pallor and sweating
- Failure to gain weight
Common Early Signs of CHD

- Cyanosis
- Tachycardia
- Tachypnea
- Cardiac Murmur
- Cardiomegaly
- Shock

Cyanosis Presentation

- Bluish discoloration of skin
- $\text{SaO}_2 < 85\%$
- Most significant sign of serious cardiac anomaly
Classification of CHD

- Cyanotic CHD
 - Decrease pulmonary blood flow
 - Mixed blood flow
- Acyanotic CHD
 - Increase pulmonary blood flow
 - Obstruction of blood flow

Cyanotic CHD

Decreased Pulmonary Blood Flow
- Tricuspid Atresia
- Tetralogy of Fallot (ToF)

Mixed Blood Flow
- Transposition of the Great Arteries
- Total Pulmonary Venous Return
- Truncus Arteriosus
- Hypoplastic Left Heart Syndrome
Tetralogy of Fallot (ToF)

- Defect with 4 problems
- Hole between 2 lower chambers (Ventricular septal defect)
- Obstruction from heart to lungs (Pulmonary stenosis)
- Aorta lies over the hold in the lower chambers (aorta enlarged and appears to arise out of both R & L ventricles)
- Muscle surrounding lower right chamber becomes overly thick (working so hard becomes thickened)

ToF Management

1. Determine if child’s O_2 is in safe range
2. If critically low then provide a prostaglandin infusion to keep PDA open (this helps increase pulmonary blood flow)
3. If O_2 levels are adequate/mild cyanosis may go home in first week of life
4. Complete repair at approximately 6 months of age
5. If decline in O_2 stats surgery performed earlier
Surgical Repair of ToF

- Closure of VSD with synthetic Dacron patch so blood flows normal from left ventricle to aorta
- Resection of pulmonary stenosis and right ventricle to enlarge outflow pathway
- Additional intervention may be required if additional problems

Survival Rate of Infants/Children with ToF

- In the absence of additional problems more than 95% of infants successfully undergo surgery in first year of life
- Long term cardiac function is excellent
- Lingering issue with a leaky pulmonary valve (some backflow of blood into the R ventricle causing it to work harder)
- Follow up intervention may be required (surgery or balloon dilation)
Hypoplastic Left Heart Syndrome (HLHS)

- Left side of heart does not form correctly
- May have co-occurring atrial septal defect
- Effects ability to pump O₂ rich blood to body
- May be diagnosed in utero or first few days of life

Management of HLHS

- Medication
- Nutrition
- Surgery
 - Norwood (within 2 weeks of birth)
 - Bidirectional Glenn Shunt (~4-6 months)
 - Fontan Procedure (between 18 months – 3 years)
Survival Rate of Infants/Children with HLHS

- Surgery is not curative and lifelong complications may exist
- Survival to 1 year of age (55.2%) CDC
- Survival to 8 years of age (50.4%)
- Lowest chance of survival across multiple ages compared to children with any other birth defect studied

Management of HLHS

- Medication
- Nutrition
- Surgery
 - Norwood (within 2 weeks of birth)
 - Bidirectional Glenn Shunt (~4-6 months)
 - Fontan Procedure (between 18 months – 3 years)
Acyanotic CHD

Increased Pulmonary Blood Flow
- Atrial Septal Defect (ASD)
- Ventricular Septal Defect (VSD)
- Atrioventricular Canal Defect
- Patent Ductus Arteriosus (PDA)

Obstruction of Blood Flow From Ventricle
- Pulmonary Stenosis
- Aortic Stenosis
- Coarctation of the Aorta

Ventricular Septal Defect (VSD)
- Wall that forms between two ventricles does not fully develop
- Can have VS defects in more than one place
- Blood flows from L ventricle through defect to R ventricle and into lungs
- Excess blood pumped in lungs creates extra work
- Occurs 42:10,000
- Usually diagnosed after birth
Management of VSD

- Medicine
- Nutrition
- Surgery (depends on size, problems resulting from defect, and/or may close spontaneously)

Patent Ductus Arteriosus (PDA)

- Fetal ductus arteriosus fails to close
- Result is shunting of oxygenated blood from aorta to pulmonary arteries
- In the presence of other congenital heart defects the PDA may be purposefully kept open
Management of PDA

- Observation – if signs of increased cardiac workload/pulmonary vascular changes then closure recommended
- PDA closure – dependent on size of PDA, age of patient, degree of shunting, symptomology
- Premature infant – Indomethacin or Ibuprofen
- Term infant <5kg symptomatic – Digoxin and Furosemide, if not suitable size for device closure then surgical ligation
- Infants/children >5k- Percutaneous occlusion (if not possible for particular child then surgical ligation)

Pulmonary Stenosis

- Thickened/fused heart valve that does not fully open
- Pulmonary valve allows blood flow out of the heart into pulmonary artery and then into the lungs
- Pressure much higher than normal in R ventricle- increased effort to pump blood into lungs
- If unable to access pulmonary valve-blood will travel other routes
- May be diagnosed in utero or shortly after birth
Management of Pulmonary Stenosis

- Medication (to keep PDA open)
- Nutrition
- Treatment dependent on severity
 - May perform cardiac catheterization – balloon to expand or stent to keep PDA open
 - Surgery to widen or replace the valve

Genetic Syndromes CHD
Genetic Syndromes Associated w/CHD

- Down syndrome – 40-50% (CHD)
- Turner syndrome – 25-45% (CHD)
- Williams syndrome – 75-80% (CHD)
- Noonan syndrome – 70-80% (CHD)

Down syndrome

- 1:700 babies born in U.S. diagnosed with Down syndrome
- Most common chromosomal condition
- Developmental delays
- Higher incidence of infection, respiratory, vision, hearing problems
- Higher incidence of thyroid problems
Down syndrome and CHD

- Most commonly occurring heart defects in children with Down syndrome
- Atrioventricular septal defect
- Ventricular septal defect
- Persistent PDA
- ToF

Turner syndrome

- Affects 1:2000 females
- Small for gestational age
- 3rd-10th percentile infancy
- 3rd percentile childhood
- Below 3rd percentile, no growth spurt
- Most symptoms occur due to loss of genetic material from one of the X chromosomes
Turner syndrome and CHD

- Coarctation of Aorta
- Bicuspid Aortic Valve
- Aortic Stenosis
- Hypoplastic Left Heart Syndrome

Williams syndrome

- 1:7500-10,000 people
- Affects many parts of the body
- Mild to moderate intellectual disability
- Unique personality characteristics
- Distinctive facial features
- Visual-spatial difficulty
- Tend to do well with spoken language
Williams syndrome and CHD

- Peripheral Pulmonary Stenosis
- Aortic Stenosis

Noonan syndrome

- 1:1,000-2,500 people
- Short stature (5—75 %)
- Skeletal malformations
- Distinctive facial features (wide-spaced eyes, deeper philtrum, low-set ears with posterior rotation, poor dental alignment, micrognathia, webbing)
Noonan syndrome and CHD

- Pulmonary Stenosis
- Hypertrophic Cardiomyopathy
- Atrial Septal Defect

Malnutrition in Children with CHD

- Inadequate intake
- Increased energy needs
- Inefficient nutrient absorption/utilization
Inadequate Intake

- Side effects of medication
- Fatigue during feeding
- Swallow problems
- Oral aversion
- Neurological dysfunction secondary to prematurity/operative complications

Inadequate Intake

- GERD
- Early satiety
- Tachypnea
- Fluid restriction
- Frequent periods of NPO
- Recurrent respiratory infections
- Psychosocial issues
Increased Energy Needs

- Chronic metabolic stress
- Post-op metabolic stress
- Tachypnea
- Tachycardia
- Cardiac hypertrophy
- Increased sympathetic activity
- Infections, fever, sepsis

Inefficient Nutrient Absorption

- Vomiting
- Edema of the small bowel (as result of right sided heart failure) leading to malabsorption
- Excessive nutrient loss
- Gut mucosal atrophy leading to malabsorption in children with pre-existing malnutrition
Medication Related Side Effects

- Lidocaine – Nausea, vomiting
- Warfarin (Coumadin) – diarrhea, nausea, GI pain/cramps
- Bumetanide (Bumex) – GI cramps, nausea, vomiting, electrolyte abnormalities
- Digitalis (Digoxin) – Nausea, vomiting, anorexia, feeding intolerance, electrolyte imbalance
- Fentanyl – nausea, vomiting

Factors Impacting Life Expectancy

- Advances in:
 - Surgical techniques
 - Cardiac catheterization
 - Interventional cardiology
 - Noninvasive imaging
 - Early diagnosis/Fetal assessment
 - Complex critical nursing care
Neurodevelopmental Complications

- Learning disabilities
- Visual motor integration
- Motor delays

(Marino et al., 2012; Wernovsky, 2006)

Attention Deficit Hyperactivity Disorders

- Common diagnosis in children with CHD (Shillingford, et al., 2008)
- Early claims - stimulant meds for ADHD result in cardiovascular damage
- Current status – safe to use stimulant meds with CHD (Cooper et al., 2011; Marino et al., 2012)
- Recommendation to consult cardiologist prior to initiation (Batra et al., 2012)
Impact of Complexity of CHD

- Lower incidence of neurodevelopmental disabilities/milder forms of CHD
- Higher incidence of neurodevelopmental disabilities/complex forms of CHD

CHD and the School-Age Child

- Promotion of health in this population includes:
 - Chronic disease management
 - Health maintenance education
 - Preventative focus for future problems
Impact of CHD on School Performance

- Increased absence – medical appointments
- Increased absence – medical complications
- Neurodevelopmental complications

Parents and the Child with CHD

- Report worry/fear
- Report anxiety/apprehension
- Impacts parenting skills and discipline

(Duncan & Caughy, 2009; Lee & Rempel, 2011)
Potential Long-Term Complications

- Follow up surgery/cardiac catheterization
- Heart failure/ventricular dysfunction
- Hyperviscosity of blood
- Stroke/thrombosis
- Endocarditis
- Arrhythmia
- Sudden death
- Myocardial infarction
- Systemic &/or pulmonary hypertension
- Renal problems
- Limited physical activity
- Dependence on meds
- Need for SBE prophylaxis

References

About congenital heart defects. (n.d.). Retrieved August 08, 2017, from http://www.heart.org/HEARTORG/Conditions/CongenitalHeartDefects/AboutCongenitalHeartDefects/AboutCongenital-Heart-Defects_UCM_001217_Article.jsp#.WYnTEUmWyM8

Wernovsky, G. (2006). Current insights regarding neurological and developmental abnormalities in children and young adults with complex congenital cardiac disease. Cardiology in the Young, 16(S1), 92. doi:10.1017/s1047951106002598