This handout is for reference only. It may not include content identical to the powerpoint. Any links included in the handout are current at the time of the live webinar, but are subject to change and may not be current at a later date.

Diagnosis & Treatment of Complex Cases in Speech-Language Pathology

This series is presented in partnership with Rush University Medical Center

Guest Editor: Richard Peach, PhD, CCC-SLP, BC-ANCDS
Dysphagia Prevention and Rehabilitation in Head and Neck Cancer

Presenter: Lisa LaGorio, PhD, MPH, CCC-SLP

Moderated by:
Amy Natho, M.S., CCC-SLP, CEU Administrator, SpeechPathology.com

Need assistance or technical support during event?
Please contact SpeechPathology.com at 800-242-5183
Earning CEUs

- Log in to your account and go to Pending Courses under the CEU Courses tab.
- Must pass 10-question multiple-choice exam with a score of 80% or higher
- Two opportunities to pass the exam

Peer Review Process

Interested in Volunteering to be a Peer Reviewer?

APPLY TODAY!

3+ years SLP Professional Experience Required

Contact Amy Natho at anatho@speechpathology.com
Disclosures

- Current Financial
 - Assistant Professor, Rush University Medical Center

- Current Non-Financial
 - Associated Faculty with the Swallowing Research Lab of Dr. Michael Crary and Dr. Giselle Carnaby
 - Aarthi Madhavan, PhD Candidate
 - Past Financial Related to this talk:
 - NCI grant
 - FL Bankhead–Coley grant
 - American Cancer Society grant
Learning Objectives

After this course, participants will be able to:
1. Describe the current research supporting the use of prophylactic exercises during radiation therapy.
2. Describe how to complete a standardized clinical swallowing evaluation for H/N cancer patients.
3. Identify the physiologic swallowing differences/dysfunctions common to head and neck cancer patients following radiation therapy.
4. Implement a dysphagia rehabilitation program for H/N cancer patients.

Today’s Talk...

› Dysphagia in H/N
› Dysphagia Assessment
 ◦ Specialized Clinical Evaluation
› Dysphagia Prevention
› Dysphagia Rehabilitation
› Case Studies
Cancer... Some global numbers...

 - 14 million new cases in 2012
 - 8.2 million deaths in 2012
 - ~70% increase over next 20 years
 - 22 million/year within the next 20 years

[Link to WHO report](http://www.who.int/mediacentre/factsheets/fs297/en/)

USA Age-adjusted incidence rates, 2011

[Graph showing top 10 cancer sites for males in the United States](http://www.cdc.gov/uscs/)
Risk Factors—H/N Specific

- Smoking
- Drinking
- Social Isolation
- Low SES
- Medical Co–Morbidities
- GERD
 - Barrett’s Esophagus
- Diet
- Particle inhalation

- Human Papilloma Virus (HPV)
 - ~70% of all new oropharyngeal cancers are due to HPV

[link to CDC HPV statistics]

Medical Treatment for H/N Cancer

- Surgical
- Radiation Therapy (XRT)
- Radiation + Chemotherapy (CRT)

- Multi-disciplinary care:
 - MD (ENT, Radiation Oncology, Hematology, Pathology)
 - Dentist (Specialist in Oral Medicine)
 - RN
 - Dietician
 - Psychosocial (LCSW, Psychologist, Psychiatrist)
 - Rehab (PT, OT, SLP)
 - Alternative Medicine (homeopathy, acupuncture, massage, dance, art)
 - Clergy
 - Caregiver
Dysphagia in H/N Cancer

- Tumor/Disease Related Dysphagia
 - Pre-Treatment

- Treatment-Induced Dysphagia
 - Surgical
 - Radiation Effects:
 - During Treatment
 - After Treatment
 - Common Radiation Effects/Co-Morbidities:
 - Xerostomia
 - Mucositis
 - Chemosensory Change
 - Lymphedema

Radiation-Related Functional Swallowing Trajectory
Swallowing Problems

- **Oral Prep/Oral**
 - Reduced lingual ROM & strength
 - Bolus control issues
 - Lingual propulsion issues
 - Loss of bolus anteriorly, posteriorly, laterally
 - Longer oral transit time
 - **Pharyngeal**
 - Delayed pharyngeal response
 - Decreased hyolaryngeal excursion
 - Decreased velar closure → nasal bolus flow
 - Decreased BOT retraction
 - Decreased epiglottis movement—sometimes none
 - Decreased laryngeal vestibule closure

Swallowing Problems

- **Esophageal**
 - PES/UES relaxation issues
 - Possible proximal stricture/stenosis
 - More prevalent if UES area was in radiation field OR if large neck dissection in that area
 - Agarwalla et al, 2015

 ↓ Spontaneous Swallowing Frequency

 - Resulting in:
 - Weight Loss
 - Compensatory Strategies
 - Modified Diets
 - PEG Dependency
Dysphagia Trajectory

- Up to 90% with some level of clinical dysphagia requiring modified diets at completion of chemo/radiotherapy
- Dysphagia persists after 3 months
- Dysphagia can persist for years after
 - Hutcheson et al., 2015

WHY?

- Why is Dysphagia an on-going issue long after the cancer has been eradicated?
- What is Radiotherapy doing?
 - Is it only Fibrosis?
Oral Morbidities & Dysphagia

- Crary et al., ASHA, 2013
- N = 32
- Outcomes:
 - Swallowing/Dysphagia
 - Taste
 - Smell
 - Xerostomia
 - Mucositis
- 3 Assessment time points: BL, Post, 3 month
H/N Swallowing Evaluation

Evaluation Timing

Pre-Op | Post-Op Acute Care | Pre-Radiation | During Radiation

Post Radiation:
- Immediately
- 1 month
- 3 months
- 6 months
- 1 year
- Annually for life?
Evaluation Components

- Standardized Clinical Evaluation
- Standardized Instrumental Evaluation
- Functional Measure(s)
- Patient Reported Outcomes (PROs)
 - Visual Analog Scale (VAS)
 - Quality of Life (QOL)

Standardized Clinical Evaluation

- Oral Motor Exam
- Xerostomia
- Mucositis
- Chemosensory Changes
- Trismus Measurements
- Weight / Weight Loss
- Lymphedema Screening

- Tongue Pressure Exam/Measurements?

- Standardized Clinical Exam: MASA–C
The MASA–C

- Based on the Mann Assessment of Swallowing Ability (MASA)
- 24 items; 200 Points; Scores ≤ 185 indicate dysphagia
- Multiple H/N cancer specific items:
 - Neck Palpation
 - Jaw Opening
 - Taste
 - Smell
 - Current Diet/Modified Diet
 - Mucositis
 - Xerostomia
 - Weight Loss

Carnaby & Crary, 2014

MASA–C Example

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neck Palpation</td>
<td>Very marked density, retraction & fixation</td>
<td>Definitely increased density and firmness</td>
<td>Just palpably increased density</td>
<td>NAD</td>
</tr>
<tr>
<td>Mouth Opening</td>
<td>< 15 mm</td>
<td>16-30 mm</td>
<td>31-45 mm</td>
<td>> 45 mm</td>
</tr>
<tr>
<td>Taste</td>
<td>No taste</td>
<td>Reduced Taste</td>
<td>5</td>
<td>NAD</td>
</tr>
<tr>
<td>Smell</td>
<td>No smell</td>
<td>Reduced Smell</td>
<td>5</td>
<td>NAD</td>
</tr>
<tr>
<td>Current Diet</td>
<td>Tube Dependent</td>
<td>Modified diet or fluids (including oral supplements only)</td>
<td>Normal diet; no restrictions</td>
<td>5</td>
</tr>
</tbody>
</table>
WHO Oral Mucositis Scale

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (none)</td>
<td>None</td>
</tr>
<tr>
<td>I (mild)</td>
<td>Oral soreness, erythema</td>
</tr>
<tr>
<td>II (moderate)</td>
<td>Oral erythema, ulcers, solid diet tolerated</td>
</tr>
<tr>
<td>III (severe)</td>
<td>Oral ulcers, liquid diet only</td>
</tr>
<tr>
<td>IV (life-threatening)</td>
<td>Oral alimentation impossible</td>
</tr>
</tbody>
</table>

NOTE: For us, the overall mucositis rating is based on BOTH tissue AND patient pain perception.

http://www.prothelial.com/images/pix7.JPG
Trismus Evaluation

http://www.therabite.co.uk/B_IdentifyingTrismus4.html

http://www.oralcancerfoundation.org/complications/trismus.php

Standardized Instrumental Exam

- Videofluoroscopy
 - MBSImp Procedure and Scoring Protocol
 - Assess for UES function/dysfunction
 - Assess for proximal esophageal stricture/stenosis

- FEES
 - Edema Rating
Functional Oral Intake Scale

- Level 1: Nothing by mouth
- Level 2: Tube dependent with minimal attempts of food or liquid
- Level 3: Tube dependent with consistent oral intake of food or liquid
- Level 4: Total oral diet of a single consistency
- Level 5: Total oral diet with multiple consistencies, but requiring special preparation or compensations

- Level 6: Total oral diet with multiple consistencies without special preparation, but with specific food limitations
- Level 7: Total oral diet with no restrictions

Crary et al, 2005

Visual Analog Scale (VAS)

- Swallowing Perception
- Pain
- Fatigue
HR–QOL

- General
 - SF–36 (has 8 sub–scales; considered the “foundational” HR–QOL tool)

- Cancer Specific
 - Functional Assessment of Cancer Therapy–General (FACT–G)

- H/N Cancer Specific
 - FACT–H&N
 - U of Washington QOL–R (UW–QOL–R)
 - Head and Neck Cancer Inventory (HNCI)

HR–QOL Swallowing

- General:
 - SWAL–QOL
 - Sydney Swallowing Questionnaire (SSQ)

- H/N Cancer Specific:
 - MD Anderson Dysphagia Inventory (MDADI)
 - European Quality of Life Scale (EORTC QLQ–C30)
Dysphagia Rehabilitation

Dysphagia Rehabilitation Timing

- Traditional:
 - Radiated tissue is too fragile, so, do nothing during the radiation therapy period
 - Place PEG prophylactically
 - Start therapy (compensations and/or exercises) after radiation therapy has been completed, and only when the patient has aspiration

- Paradigm Shift:
 - 2001: The start of the “Pharyngocise” dysphagia prevention studies
 - Exercise/Therapy during the radiation therapy period
Exercise-Based Dysphagia Prevention

Goal:
- Minimize the long-term effects of radiation on swallowing function

Rationale:
- Skeletal muscle responds to functional demand
 - “Plasticity”
- Muscles atrophy rapidly from immobilization
 - “Use it or lose it”
- Resistive exercise helps muscle strength and function recovery
- Prophylactic exercise facilitates maintenance of oropharyngeal muscle function

Other Types of Studies
- 2006, Kulbersh, et al.
 - Prospective Cohort study, n = 37
 - Retrospective case control, n = 18
- 2011, Van der Molen, et al.
 - Parallel arm w/ embedded Case-Control, n = 49
- 2013, Duarte, et al.
 - Retrospective case series, n = 85
- 2013, Hutcheson, et al.
 - Retrospective Observational, n = 497
- 2014, Ohba, et al.
 - Retrospective case-control, n = 51
- 2014, Cnossen, et al.
 - Multi-modal delivery, n = 34
- 2014, Van der Molen, et al.
 - Parallel arm, n = 29
- 2015, Virani, et al.
 - Parallel Arm, n = 50

Randomized Control Trials
- 2012, Carnaby-Mann, et al.
 - n = 58
- 2012, Carnaby, LaGorio, et al.
 - n = 130
- 2012, Kotz, et al.
 - n = 26
- 2015, Mortenson, et al.
 - n = 44

2015, Schindler et al., European Consensus Document

The Evidence:
Carnaby-Mann, 2012 #1
The “Pharyngocise” Studies
- RCT
 - Pharyngocise, Sham Exercise, Traditional Care (control)
 - N = 58
- Pharyngocise = Falsetto, Tongue Press, Hard Swallow, Jaw Stretch with TheraBite
- Assessment Time Points:
 - BL, Post, 6 months
- Outcomes:
 - T2 weighted MRI of swallowing musculature
 - Swallowing Ability (MASA)
 - FOIS
 - Chemosensory function
 - Saliva
 - Trismus
 - Weight Loss
- Results:
 - Post:
 - Any Exercise: Geniohyoid, mylohyoid, hyoglossus showed less deterioration than the control group
 - Pharyngocise: Less deterioration in MASA, FOIS, taste decline, smell decline, weight loss, mouth opening
 - Better outcomes than traditional care

Carnaby-Mann, 2012, #2
“Pharyngocise” Dose–Response Study
- RCT
 - Clinician-Directed; Patient-Directed; Traditional Care (control)
 - N = 130
- Assessment Time Points:
 - BL, 6 weeks, 3 months
- Outcome Measures:
 - MASA-C
 - FOIS
 - PEG dependency
 - Weight Loss
 - QOL
- Results:
 - Any exercise better than no exercise across all outcomes
 - Clinician-directed results in better outcomes than patient-directed therapy across
 - 90+ exercise cycles was necessary for best outcomes
Hutcheson, et al., 2013

- Retrospective Observational Study
- N = 497

Outcomes:
- Final diet at end of radiotherapy
- PEG dependence
- Exercise Adherence

“Eat” AND “Exercise”
- Exercises:
 - Modified Shaker
 - Jaw Stretch
 - Supraglottic/Valsalva
 - Falsetto
 - Lingual protrusion/retraction
 - Yawn, Gargle
 - Masako
 - Effortful swallow

Results:
- 3 Groups: Non-compliant (13%), Partially Compliant (64%), Fully Compliant (24%)
- ↑ Compliance → ↑ Oral diet
 - Non-Compliant = 65%; Partial = 77–84%; Full = 92%

The Challenge...

- ↑ Exercise → ↑ Swallowing and ↑ QOL

Patient Adherence to the exercises
- ~ 15–80% fully compliant

Shinn et al, 2013:
- N = 109; adherence data on 65:
- 58% never tried the exercises!!!
- WHY NOT?
 - Lack of understanding the importance (SLP issue?)
 - Radiation side effects interfered (disease burden)
Dysphagia Rehab Post Radiation

› No standardized dysphagia rehabilitation practice
 ◦ Krisciunas, et al., 2012, Survey of SIG 13, n = 759

› When should we intervene?
 ◦ Hutcheson et al., DRS, 2015, n = 57
 • While most (91%) regained function w/in 1 year; the remainder still had dysphagia for 6+ years; 3 had lower cranial neuropathy
 ◦ Langmore et al, DRS, 2015, n = 170
 • Dysphagia worsens over time
 • Better outcomes when therapy provided earlier than 6 months after XRT, than with therapy several years later.

Dysphagia Rehab Post Radiation

› Traditional Approach (Krisciunas 2012 survey)
 ◦ Compensations (90.1%)
 ◦ Stretches (68.4%)
 ◦ Non-swallow exercises (83.9%)
 ◦ Swallow exercises (83.0%)
 ◦ Other (39.8%)
Dysphagia Rehab Post Radiation

- Non-Traditional Approaches
 - MDTP?
 - Crary, et al., 2010
 - Respiratory-Swallow training?
 - Martin-Harris et al., 2015
 - Vital Stim?
 - Krisciunas et al., 2015
 - CTAR?

- May need cervical esophagus dilation
- May need UES denervation

Future Directions

- Pharyngocise Study—longer term outcomes
- Prevention Exercises with Adjunctive Modalities
 - Tongue Strengthening (IOPI, MOST/I-Pro, Swallow Strong)
 - Chin Tuck to Resistance (CTAR)
- Taste Studies
- MDTP Studies
- Other Rehabilitation Studies
- QOL studies, including the Caregiver
 - Nightingale, et al., 2014
 - Lee et al., 2015
What are we doing at Rush?

- Clinic Protocol:
 - Dedicated SLP H & N team
 - All patients get assessed at multiple time points
 - Acute and OP
 - All patients are taught Pharyngocise at start of Radiotherapy
 - Follow-up informally weekly, formally Bi-Weekly during radiotherapy
 - On-going evaluation at all routine follow-ups
 - Dilation as indicated
 - MDTP Rehabilitation

- Research:
 - Tongue Strengthening protocols using adjunctive modalities
 - Effects of TORS on dysphagia outcomes

Take Home Messages

- Dysphagia persists—often for years
 - Multi-faceted, and not just due to fibrosis
- Need to do a different type of clinical assessment
- Need to assess more often—possibly for life
- Need to intervene early for prevention
 - Need to stress the importance of prevention exercises now, and for life
- Need to intervene early for rehabilitation
 - Need to be aggressive in the therapy
Case Study #1
- 50 y/o male
- T3 SCCA BOT
- Trained in Pharyngocise, did exercises routinely
- Remained PO diet throughout XRT, but last 2 weeks was liquid only
- Mucositis Grade 2 at the end, PEG placed in last few days of XRT for supplementation, continued drinking water
- Continued Pharyngocise post XRT
- By 2 months, full regular diet

Case Study #2
- 40 y/o male
- T2 of the BOT
- Prophylactic PEG placed
- No SLP intervention for preventative exercises
 - Multiple MBSS’s, home exercise program, no therapy
- 1 year later—NPO, wanted therapy
- MDTP x 2 weeks → mechanical soft diet
- Referred for dilation
- Post–dilation, advanced to regular diet
Case Study #3

- 54 y/o male
- T3 SCCA of the tonsil
- No SLP intervention for H/N at any point
- Liquid diet
- 6 months after XRT, L CVA; PEG placed
- Traditional dysphagia therapy in Rehab
- Some progress → PEG + liquids for pleasure
- I did repeat VFSS → stricture
- S/P dilation
- MDTP x 5 sessions → Regular diet
- PEG removed
- 1 year later—doing great!

References

References

Hutcheson KA, Bhayani MK, ...Lewin, J. (2013). Use it or lose it: Eat and exercise during radiotherapy or chemoradiotherapy for pharyngeal cancers. JAMA Otolaryngology—Head & neck surgery, 139(11), 1127-1134.

References

