Allied Health Media

SpeechPathology.com

#### A Sensory Approach to Dysphagia Treatment: After the Cranial Nerve Exam

Presenter: Tiffani Wallace, M.A., CCC-SLP, BCS-S

Moderated by: Amy Natho, M.S., CCC-SLP, CEU Administrator, SpeechPathology.com

Allied Health Media

SpeechPathology.com

#### SpeechPathology.com Expert eSeminar

## Need assistance or technical support during event?

Please contact SpeechPathology.com at 800-242-5183

Allied Health Media

SpeechPathology.com

#### **Earning CEUs**

- >Log in to your account and go to Pending Courses under the CEU Courses tab.
- ➤ Must pass 10-question multiplechoice exam with a score of 80% or higher
- >Two opportunities to pass the exam

| Allied <b>Health</b> Media     | Speech <b>Pathology</b> .com |
|--------------------------------|------------------------------|
| Peer Rev                       | view Process                 |
|                                | ring to be a Peer Reviewer?  |
| APPL                           | Y TODAY!                     |
| 3+ years SLP Profess           | ional Experience Required    |
| Contact Amy Natho at <u>ar</u> | natho@speechpathology.com    |
|                                |                              |
|                                |                              |
|                                |                              |
|                                |                              |
|                                |                              |
|                                |                              |
| Δ Sensory Δn                   | proach to Dysphagia          |
| Tı                             | reatment:                    |
| After the C                    | ranial Nerve Exam            |
|                                |                              |
|                                |                              |
|                                |                              |
|                                |                              |
|                                |                              |
|                                |                              |
|                                |                              |
| Cranial N                      | Nerve Review                 |
| Sidilidi i                     | 10.1011011                   |
|                                |                              |
|                                |                              |
|                                |                              |
|                                |                              |
|                                |                              |
|                                |                              |
|                                |                              |

## Terminology

- CNS (Central Nervous System): brain and spinal cord
- PNS (Peripheral Nervous System): made up of Somatic Function (cranial nerves and spinal nerves) and Autonomic Function (involuntary smooth muscle, cardiac muscle and glands, both sympathetic and parasympathetic)

## Terminology

- Afferent (sensory): impulses from peripheral tissues toward CNS
- Efferent (motor): impulses from CNS to muscles and/or glands

## **Terminology**

- Nucleus Tractus Solitarius (NTS): Where sensory input is recognized.
- Programs the swallow in the nucleus ambiguus where sensory leads to motor.

| Wallace | SpeechPathology.com |
|---------|---------------------|

## Swallowing

- "The act of swallowing is a synergistic motor response to stimulation of afferent receptors." (Martin-Harris et al, 2008))
- Stimulation of afferent receptors leads to:
  - . 1. Propulsion of the bolus
  - 2. Protection of the airway.

## **Swallowing**

 Vision, smell, taste, touch/pressure and temperature are among the influences on normal and abnormal swallowing physiology. (Rosenbek)

## **CN V-Trigeminal**

- Sensory (tactile facial sensation)
- > Position bolus in the mouth
- » Pocketing
- » Facial sensation
- Motor (muscles of mastication)
- Mastication
- ▶ Hyoid Elevation
- > Velar Elevation
- Main sensory swallowing nerve-bare nerve endings

| Wallace/S | peechPath | ology.com |
|-----------|-----------|-----------|

## **CN V-Trigeminal**

- Reflexes
  - Jaw Jerk Reflex

### **CN VII-Facial**

- »Parasympathetic (salivation)
  - Submandibular
  - Sublingual
- Sensory (taste anterior 2/3 tongue)
  - ∍Tast
- Motor (movement of facial muscles)
  - Tone/movement cheeks
  - ∘Lip closure
  - Hyoid Elevation

## CN IX-Glossopharyngeal

- Parasympathetic
  - » Parotid
- Sensory
  - > Senses arrival of the bolus at the palate
  - > Taste (posterior 1/3 tongue and oral pharynx)
  - Gag Reflex
- ⊳Motor
  - , Pharyngeal constriction and shortening (stylopharyngeus)
  - ▶ Elevation of palate

| Wallace    | SpeechPathology.com    |  |
|------------|------------------------|--|
| v v anacc, | Specelli attibiogy.com |  |

## CN IX-Glossopharyngeal

- Reflex
  - Gag (along with CN X)

## **CN X-Vagus**

- » Sensory (90%)
- > Pharyngeal Plexus-General sensory
  - > Taste in oropharynx (epiglottis/pharynx)
  - » Sensation of residue in pharynx, larynx, esophagus

## **CN X-Vagus**

- Motor
- » Velopharyngeal Closure
- > Vocal Fold Approximation
- » Middle/inferior pharyngeal constriction
- » Pharyngoesophageal Segment Relaxation
- »Esophageal Peristalsis
- Gag Reflex

| • |   |
|---|---|
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   | _ |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |

## CN X-Vagus

- Superior Laryngeal Nerve
  - Sensation and motor above the vocal cords
  - Reflex response to material entering the space above the vocal cords is a swallow.

## CN X-Vagus

- Recurrent Laryngeal Nerve
  - Sensation and motor at and below the vocal cords
  - Reflex response to material entering space is to cough.

## CN XI-Spinal Accessory Nerve

- Motor Function
  - Assists with velopharyngeal closure
  - Innervates the sternocleidomastoid muscle for head turn

| Wallace/SpeechF | Pathology co | m |
|-----------------|--------------|---|

## CN XII-Hypoglossus

- - Power source for the tongue muscles
  - > Hyoid-Thyroid Approximation
  - Hyoid Anterior Movement

## CN XII-Hypoglossus

- Reflexes
  - Tongue Base Retraction
  - . Lingual Groove
  - . Protective Retraction

## **Neural Plasticity**

The ability of the brain to change

| The 10 Principles of Neural Plasticity |   |
|----------------------------------------|---|
| Use it or lose it                      |   |
| Use it and improve it                  |   |
| 3. Experience specific                 |   |
| 4. Repetition matters                  |   |
| Intensity matters                      |   |
| o. Intensity matters                   |   |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        | 7 |
| The 10 Principles of Neural Plasticity |   |
| The To Finiciples of Neural Flasholty  |   |
| 6. Time matters                        |   |
| 7. Salience matters                    |   |
| 8. Age matters                         | - |
| 9. Transference                        |   |
| 10. Interference                       |   |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        | _ |
|                                        |   |
| Sensory                                |   |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        |   |
|                                        |   |

| Sensory I | Input |
|-----------|-------|
|-----------|-------|

 Sensory input is vital to the oral, pharyngeal and esophageal phases (Steele and Miller, 2010)

## Sensory Input

- Modifies esophageal swallow intensity
- Synaptically influences multiple pathways
- Triggers pharyngeal swallow response

## Sensory Input

Saliva is important to sensory; waterspecific receptors in the pharynx.

| What is a sensory |
|-------------------|
| experience?       |

- 。 Sight
- 。Smell
- Taste
- . Texture
- . Temperature
- . Viscosity
- . Volume
- . Chemesthesis

## Sight

- Cranial Nerves: II, III, IV, VI
- Part of the anticipation

### Smell

- . Cranial Nerve I (Olfactory)
- Part of anticipation
- In Alzheimer's, Parkinson's, MS, ALS: taste not as affected as smell. (Logemann)
- Food flavors depend on smell and not on taste.

|                                                                                                                    | - |  |
|--------------------------------------------------------------------------------------------------------------------|---|--|
| Taste                                                                                                              |   |  |
| lasie                                                                                                              |   |  |
|                                                                                                                    |   |  |
|                                                                                                                    |   |  |
|                                                                                                                    |   |  |
| There we set the steer was a see                                                                                   |   |  |
| ⇒ Throw out the tongue map                                                                                         |   |  |
|                                                                                                                    | _ |  |
|                                                                                                                    |   |  |
|                                                                                                                    | 7 |  |
| Taste                                                                                                              |   |  |
|                                                                                                                    |   |  |
|                                                                                                                    |   |  |
|                                                                                                                    |   |  |
| <ul> <li>Combination of look, smell and sounds along with<br/>flavor.</li> </ul>                                   |   |  |
| <ul> <li>Papillae-taste buds-gustatory receptor cells-<br/>gustatory hair running through a taste pore-</li> </ul> |   |  |
| stimulates the cranial nerve fibers                                                                                |   |  |
|                                                                                                                    |   |  |
|                                                                                                                    |   |  |
|                                                                                                                    |   |  |
| Taste                                                                                                              |   |  |
|                                                                                                                    |   |  |
| <ul> <li>Five Flavors: Sweet, Sour, Salty, Bitter,<br/>Umami</li> </ul>                                            |   |  |
| Bitter is the most diverse taste.                                                                                  |   |  |
| 。CN VII, IX, X                                                                                                     |   |  |
|                                                                                                                    |   |  |
|                                                                                                                    | _ |  |

#### **Taste**

- Strong, unpalatable sour bolus. (Pelletier & Dhanaraj, 2006)
- Moderate sucrose, high salt, high citric acid

#### **Taste**

- Sour Bolus = 50% water/50%
   ReaLemon at room temp (Palmer, et al 1992)
- Sour=more immediate swallow response.
- High Citrus was not effective with those with dementia. (Pelletier & Dhanaraj, 2006)

#### **Taste**

Regardless of the type of sensory taste stim (sweet, sour, salty, bitter), the same 4 to 5 regions of the cortex are excited (Steele and Miller,2010)

| Wallace    | SpeechPathology.com    |  |
|------------|------------------------|--|
| v v anacc, | Specelli attibiogy.com |  |

#### Chemesthesis

- Not taste nor smell.....carbonation, hotness of a pepper, coolness of Menthol.
- Mediated by the Trigeminal Nerve; creates a trigeminal irritant.

| $\sim$ |     |     | - 41 |     |    |
|--------|-----|-----|------|-----|----|
| ( )    | hΔi | നമ  | ctl  | nes | 10 |
|        |     | 110 | เอน  | 103 | ΠO |

- . Pain
- Heat
- Coolness
- Tingling
- . Tickle
- . Itch

#### Chemesthesis

- Carbonation
  - No significant effect on oral transit time, pharyngeal transit time, initiation of pharyngeal swallow and pharyngeal retention. (Saravou & Walshe, 2012)
  - Did significantly decrease penetration/aspiration with 5 & 10 ml swallows.

#### Chemesthesis

#### Carbonation

 Drinks containing chemical ingredients that activate sour and heat receptors in the mouth alter swallowing physiology compared to water, and that greater stimulation may yield greater effect. (Krival & Bates, 2012).

#### Chemesthesis

#### Carbonation

 Carbonated thin liquid significantly decreased the incidence of spillover, delayed pharyngeal response and laryngeal penetration compared to noncarbonated thin liquids. (Newman et al, 2001)

#### Chemesthesis

#### Carbonation

 Likely that sour and carbonated beverages reflect a more organized activation of the submental muscles because of more effective afferent input to the NTS. (Miura et al)

| Т | ex | tι | ır | 6 |
|---|----|----|----|---|
|   | しへ | ιı | 41 | v |

Food texture, hardness, cohesiveness and slipperiness are relevant for physiological behaviors and bolus flow patterns. (Steele)

#### **Texture**

- Systematic changes in bolus property indeed affected hyoid movement kinematics.
- Thickest material had the longest period of preswallow hyoid gestures.
- Larger volume=greater forward movement trajectory. (Chi-Fishman & Sonies)

## Viscosity

- Changes in texture?
- Using texture as a therapeutic tool.

## Changing the Bolus

- Chewy, texture, weighted bolus
- Create efferent drive and add resistance

### Mastication

 There is an increased afferent drive with mastication of a bolus (Cranial Nerves V, VII)

## Temperature

- Cold
- Cold + Sour + Metal (Sciortino et al)

## Temperature

- Cold may improve each swallow it accompanies (Steele & Miller, 2010)
- Also found the metal probes to warm to body temperature during arrival at the faucial pillars.

#### **DPNS**

- Deep Pharyngeal Neuromuscular Stimulation
- Has no published, peer-reviewed research
- Use of frozen lemon glycerin swabs, specific oropharyngeal points to elicit swallowing responses.

## Thermal Tactile Stim





# Thermal Tactile Stimulation

- # "00" laryngeal mirror.
- Stimulate faucial arches 4-5x then assess speed of swallow.
- \* Repeat when swallow slows.
- \* Recommended dosage is 5x/day.

# Thermal Tactile Stimulation

Greatest effect when cold is combined with sour and a metal probe.

## Ice Finger

- For "suck and swallow" technique; Suck 5-10 times then swallow.
- Can also fill the finger of a glove and freeze.



#### Volume

- Changes in volume can be therapeutic (Logemann)
- Larger bolus may be required to assist in opening the PES.

## Effortful Swallow

- Increased sensory drive/motor output for:
  - Tongue base
  - Hyolaryngeal excursion
  - . Pharyngeal contraction
  - Pharyngoesophageal (esophageal) opening

## TheraSip



- During straw drinks, we create stronger lip seal, velopharyngeal closure, pharyngeal contraction and glossopharyngeal seal.
- Increased efferent drive with straws.

# Expiratory Muscle Strength Training (EMST)

Afferent stimulation to the brainstem swallowing centers through peripheral sensory receptors in the tongue and oropharynx, strengthening the oropharyngeal, laryngeal and supralaryngeal muscles.



# Neuromuscular Electrical Stimulation (EStim)



Increased afferent stimulation increases efferent drive.