Introduction to Tracheoesophageal Voice

Presenter: Julie Bishop-Leone, M.A., CCC-SLP

Moderated by:
Amy Natho, M.S., CCC-SLP, CEU Administrator, SpeechPathology.com

SpeechPathology.com Expert eSeminar

Need assistance or technical support during event?
Please contact SpeechPathology.com at 800-242-5183
Earning CEUs

• Log in to your account and go to Pending Courses under the CEU Courses tab.

• Must pass 10-question multiple-choice exam with a score of 80% or higher

• Two opportunities to pass the exam

Peer Review Process

Interested in Becoming a Peer Reviewer?

APPLY TODAY!

• 3+ years SLP Professional Experience Required

• Contact Amy Natho at anatho@speechpathology.com
Introduction to Tracheoesophageal Voice Restoration

Julie K. Bishop-Leone, M.A., CCC-SLP
Co-Director & Senior Clinical Education Specialist
Atos Medical, Inc.

Disclosure Statements

- Julie Bishop-Leone, MA, CCC-SLP is the Co-Director and Senior Clinical Education Specialist in the Educational Division of Atos Medical. She has the following financial relationship or relationship affiliations to disclose: She is employed by the Educational Division of Atos Medical. She does not have any relevant nonfinancial relationships to disclose.
Purpose of the Course

- Describe what tracheoesophageal (TE) speech is and how it works
- Determine who is an appropriate candidate for a tracheoesophageal puncture
- How to size the tracheoesophageal puncture
- Identify the various types of voice prostheses and how they are placed
- Describe strategies of how to initiate TE voice

Anatomy Review

- Separate aerodigestive tract
- Stoma
- No aspiration
- Olfactory changes
- Loss of laryngeal communication (verbal, psychological and emotional)
- Articulation unaffected
- Affects vocal intensity, pitch and duration
Tracheoesophageal (TE) Voice Restoration

- Tracheoesophageal speech
 - Sound source is pharyngoesophageal (PE) segment or neoglottis, **NOT** the voice prosthesis
 - Pulmonary air
 - One-way valve TE Voice Prosthesis (VP)
 - Pts without VP tend to have fewer social contacts (Brook et al, 2013)
 - Considered the “Gold Standard”

TE Speech Success Factors

- Candidate selection
- Patient education
- Knowledge, skill and experience level of the head & neck surgeon and speech pathologist
Candidacy for TE Voice Restoration: Surgical/Non-Surgical Factors

- Will the patient be overwhelmed?
- Cognitive & psychological status?
- Manual dexterity?
- Visual acuity?
- Support system?
- Financial status?
- Proximity to SLP familiar with TE voice?
- Type of reconstruction?
- Can patient tolerate a second surgery for secondary puncture?
- If secondary, is their PE segment capable of vibration?
- GOOD CANDIDATE ≠ GOOD VOICE

Timing of the Tracheoesophageal Puncture (TEP)

- **Primary TEP**
 - TEP tract created at the time of the total laryngectomy (TL)

- **Secondary TEP**
 - TEP created as a separate procedure after the TL (second surgery)
Primary vs. Secondary TEP Considerations

<table>
<thead>
<tr>
<th>Primary TEP</th>
<th>Secondary TEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ No need for additional surgery</td>
<td>▪ Need additional surgery/procedure</td>
</tr>
<tr>
<td>▪ Immediate, more “normal” voice rehabilitation</td>
<td>▪ Delayed voicing</td>
</tr>
<tr>
<td>▪ May be overwhelming</td>
<td>▪ Patient may be better prepared</td>
</tr>
<tr>
<td>▪ Unable to predict fluency</td>
<td>▪ Able to determine if PE segment capable of vibration pre-op</td>
</tr>
<tr>
<td>▪ Can place prosthesis at the time of surgery</td>
<td>▪ Can place prosthesis at the time of surgery/procedure</td>
</tr>
<tr>
<td>▪ If postop XRT, may interfere with TE voice</td>
<td>▪ Pt. may be voicing in recovery</td>
</tr>
<tr>
<td>▪ May have means of feeding if use RR catheter</td>
<td>▪ Able to complete botox or myotomy, if indicated</td>
</tr>
</tbody>
</table>

Primary TEP with Provox Vega Puncture Set

▪ Video 1
How to Create Secondary TEP: New Provox Vega Puncture Set

- Video 2

Timing of Voice Prosthesis (VP) Placement

- **Primary VP Placement**
 - Placement of the voice prosthesis into the puncture at the time it is created

- **Delayed VP Placement**
 - TEP maintained with catheter or feeding tube
 - VP fitting completed approximately 5-10 days post op in the clinic
Primary Placement vs. Delayed Placement of VP

<table>
<thead>
<tr>
<th>Delayed Placement of VP</th>
<th>Primary Placement of VP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requires RR catheter to stent</td>
<td>Eliminate "initial fitting” trauma & concentrate on voicing, not fitting</td>
</tr>
<tr>
<td>Discomfort at puncture site</td>
<td>Less pain at stomal site (Burkey, 2011)</td>
</tr>
<tr>
<td>Delayed voicing</td>
<td>Earlier & more optimal voicing (Gultekin et all, 2010; Deschler et al, 2011; Burkey et al, 2011)</td>
</tr>
<tr>
<td>Frequent Replacements due to size fluctuations</td>
<td>Eliminate need for frequent resizing = ↓ cost (OpdeCoul B et al, 2000)</td>
</tr>
<tr>
<td>RR catheter can easily dislodge</td>
<td>Less likely to dislodge (Gultekin et all., 2010; Burkey et al, 2011)</td>
</tr>
<tr>
<td>If primary TEP, can feed through RR catheter</td>
<td>Potential for more efficient rehabilitation & decreased cost</td>
</tr>
</tbody>
</table>

Results of 318 Pts with Primary Placement

Two-thirds of replaced indwelling Provox prostheses had the same size (N=2396)*

Tracheoesophageal Puncture (TEP) Fitting: A Comparison of Voice Restoration and Complications

April 2011-August 2013; Joann Kmiecik-Brian Burkey

Information presented at the 2013 Medical College of Wisconsin Head & Neck Symposium for the Advanced Practitioner updating the Cleveland Clinic’s Head & Neck Institute 2011 Outcomes Speech Pathology by Joann Kmiecik, SLP and Brian Burkey, MD. Used by permission.

The Cleveland Clinic Experience - UPDATE

<table>
<thead>
<tr>
<th>Years</th>
<th>Primary Fit (PF)</th>
<th>Catheter Stent (CS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>2012</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>2013</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>36</td>
<td>13</td>
</tr>
</tbody>
</table>

Parameters
- Voicing at first SLP visit
- ER visits (catheter reinsertion)
- Pain/discomfort at stoma site

Tracheoesophageal Voice Prostheses
Types of Voice Prostheses

- **Indwelling**: Placed by a professional only
- **Non-indwelling**: Patient and/or professionally managed

Voice Prosthesis Sizes

Diameter:
- Measured in French = 1 Fr = 1/3 mm
- Standard diameter options:
 - 16 Fr = 5.3 mm
 - 17 Fr = 5.6 mm
 - 20 Fr = 6.6 mm
 - 22.5 Fr = 7.4 mm
- Standard industry length options:
 - 4-28 mm
Non-indwelling Voice Prostheses

- **Provox® NiD™**: 17, 20 Fr
 - Non-sterile

- **Blom-Singer® Low Pressure**: 16, 20 Fr
 - Increased resistance, standard
 - Non-sterile

- **Blom-Singer® Duckbill**: 16 Fr
 - Non-Sterile

Provox® Indwelling Voice Prostheses

- **Provox®(1)**
 - Original Provox voice prosthesis
 - Retrograde insertion/removal
 - Used in OR as well as in the clinic
 - Sterile

- **Provox®2**
 - Second generation Provox
 - Bi-directional (anterograde or retrograde) insertion
 - Used in OR and in clinic
 - Sterile
Provox® Indwelling Voice Prostheses (continued)

- **Provox® ActiValve®**
 - Designed for pts. with short device lifetime
 - Short device lifetime = 5 consecutive changes where device life is ≤ 6 wks
 - Bi-directional insertion
 - Non-sterile

- **Provox® Vega™**
 - Third generation Provox product
 - Bi-directional insertion
 - Sterile

InHealth Indwelling Voice Prostheses

- **Blom-Singer Classic™ Indwelling**
 - Anterograde insertion only
 - Comes in std & increased resistance
 - Non-sterile

- **Blom-Singer Classic™ Indwelling Sterile**
 - Bi-directional insertion
 - Sterile

- **Blom-Singer Advantage®**
 - Anterograde insertion only
 - Soft & hard valve assembly
 - Non-sterile

- **Dual Valve**
 - Anterograde insertion
 - Designed for pts. with short device life
 - Non-sterile

- **Rapid Response Indwelling**
 - Non-sterile
 - Large Tracheal and/or Esophageal Flange
 - Increased resistance or special length
Sizing & Dilation Of The TE Tract

Tract Dilation

- **Provox® Dilator**
 - Maintains puncture size during placement
 - Orient one to tract direction
 - Upsizing of punctures
 - 15 Fr at the tip increases to 24 Fr
 - Retention collars at the end of each section
 - Steps 18, 20, 22, 24 Fr
 - Silicone, autoclavable
Tract Dilation

- **InHealth® Dilator**
 - Maintains puncture size during placement
 - Acquaints clinician to puncture tract
 - Upsizing of puncture
 - 14 Fr at the tip increases to 18Fr or 22 Fr
 - Must advance fully to obtain the 18 and 22 diameter
 - Silicone, autoclavable

- **Blom-Singer® Dilator-Sizer**
 - Maintains puncture size during placement
 - Dilates and sizes with one instrument
 - Upsizing of puncture
 - 18 or 22 Fr sizes
 - Must fully advance to obtain the 18 or 22 diameter
 - Silicone, autoclavable

Sizing the TEP

Measure devices

- **Provox® Measure**
 - 20 Fr and 22.5 Fr

- **Blom-Singer Voice Prosthesis Sizers:**
 - 16 Fr and 20 Fr

- **Blom-Singer Dilator-Sizers:**
 - 18 Fr and 22 Fr
Sizing Tips

- **Prior to sizing:**
 - Use the proper sizer:
 - 16 or 17Fr, use the 16Fr sizer
 - 20 or 22.5Fr, use the 20Fr sizer
 - Obtain adequate TE tract patency
 - Dilate the TE tract as needed (general rule)
 - 16 or 17Fr, dilate to 18Fr
 - 20Fr, dilate to 22Fr
 - 22.5Fr, dilate to 24Fr
 - Orient yourself to TE tract direction w/ tip of dilator or RR catheter!

- **Sizing steps:**
 - Insert tip of the sizer & position in direction of TEP;
 - Push until feel it “pop;”
 - Once you feel a “pop”, make sure to push the sizer flush against the tracheal side of the puncture before pulling back and reading the size.
 - If you are in between sizes, **ALWAYS PLACE A LONGER PROSTHESIS!**

Inserting the Sizing Device

Video 3 & 4

Checking the Fit of the Current Prosthesis:
Using actual sizing device provides optimal results
The novice clinician should always resize and not guess

Video 5

Introduction to Tracheoesophageal Voice Restoration

Non-Indwelling Voice Prostheses

Pros
- User independence
- Ideal for patients living far from care facilities
- Cleaned in situ or externally
- Smaller flange diameter and thickness relative to indwelling

Cons
- Less consistent follow-up with SLP
- Requires retention strap to be taped to the neck
- May have shorter durability than indwelling
- High risk of dislodgement (Hancock et al., 2005)
- Frequent changes over time may result in increased risk of party wall separation and granulation

InHealth® Non-Indwelling Voice Prosthesis

- Sizes: 16 or 20 Fr diameter
- 4-28mm lengths
- Low Pressure
 (std or increased resistance)
- Duckbill
- Accessories:
 - Dilator 18 or 20
 - Flushing Device
 - Gel Cap

Provox® NiD™ Voice Prosthesis

- Sizes: 17 or 20 Fr diameter
- 6, 8, 10, 12, 14, 18 mm lengths
- Accessories:
 - Provox® Dilator 17 or 20
 - Provox® Flush
 - Provox® Brush
Loading the Provox NiD

Provox NiD™ Insertion

Courtesy of Saint Louis University Cancer Center – Dennis Fuller

Introduction to Tracheoesophageal Voice Restoration 2014
Indwelling Voice Prosthesis

PROS
- Less demands on user
- Long term cost may be same as non-indwelling over time
 - May require reduced therapy time
 - May have longer durability than non-indwelling
- More regular f/u
- Insertion at time of TEP is possible
- Cleaned in situ
- Good for pts. with poor visual acuity and/or manual dexterity
- Eliminate need for a strap

CONS
- Dependent on clinician
- Higher initial cost

Provox®2

- Hinged pre-tensioned valve
- Low resistance
- Blue fluoroplastic ring
 - Radiopaque
- Esophageal flange stronger than tracheal flange
- 22.5 Fr diameter
Provox ActiValve® Features

- Valve and valve seat made of fluoroplastic
- Nonsterile
- Magnets counteract increased esophageal pressure and provide ‘active’ valve closure
- Magnet strengths: Light, Strong & Extra Strong

A problem-solving indwelling voice prosthesis, eliminating frequent candida and ‘under-pressure’-related replacements: Provox ActiValve.

Hilgers FJM, Ackerstaff AH, Balm AJM, van den Brekel MWM, Tan IB, Persson JO. Acta Otolaryngol (Stockh) 2003; 123: 972-9

Loading the Provox®2 & ActiValve® VPs

- Use Provox Insertion Tool - no gel cap
- Insert & secure prosthesis tail in insertion tool
- Set tracheal end of prosthesis on end of inserter
- Pinch esophageal flange forward
- Introduce into insertion tube
- Depress top flange portion down and forward while inserting prosthesis into tube
- Advance prosthesis until #1 on stick is even with rim of loading tube.

Video 8

Provided by the Netherlands Cancer Institute
Inserting the Provox2 & ActiValve VPs

Video 9

Provox® Vega™

- Preloaded and sterile
- Automatic folding of flanges
- Prevents unintentional overshooting
- Easier and more hygienic handling
- SmartInserter is replacement device only (not to be used in a fresh non-healed TEP)
- 3 Diameters: 17, 20, 22.5’ Fr
- Lengths: 4, 6, 8, 10, 12.5, 15 mm
- Accessories:
 - Provox Brush
 - Provox Flush
 - Provox Vega Plug
 - Provox Dilators

*Same Outer Diameter as Provox2
Provox® Smartinserter™

Key Points for insertion:
- Always preload and ensure correct position of voice prosthesis in loading tube prior to actual insertion.
- Use a two handed approach.
- Maintain a steady position during insertion to avoid undershoot.
- Dilate the puncture prior to insertion if the puncture is tight, angled, or 'difficult' for any reason.

Provox Vega Placement

Video 11

2014 Introduction to Tracheoesophageal Voice Restoration
Accidental Dislodgement

• Don’t panic!
• Pt. should lean forward and cough to make sure that prosthesis is not lodged in airway
• Once Pt. is breathing easily, insert catheter or dilator in puncture
• Tie exposed end off so that gastric juices do not leak out
• Tape to neck
• If prosthesis wasn’t located, go to hospital for chest xray to ensure that prosthesis is not in the lung
• If there is not anything stenting TEP, can close up in minutes to hours and patient can aspirate!

Voice Prosthesis Care/Cleaning
“Brush and Flush”
Step One: Clean with Provox® Brush

- Designed for use with Provox VPs only!
- Two sizes for all Provox® VPs:
 - Standard (lengths 4-10mm)
 - XL (lengths 12-18mm)
- Discard every 30
- VP should be cleaned with brush at least twice a day and after meals
- VP should also be brushed if leaking or malfunctioning
- Brush is designed for safety & to not:
 - harm the esophagus
 - inadvertently remove VP
 - damage the Provox VP valve
- Avoid vigorous brushing!

Step 2: Use the Provox® Flush

- For cleaning of the inner lumen of the VP
- Removes debris which loosens after brushing
- Four jets for optimal cleaning – air or water
- Universal for all Provox® VP
- Free et al. (2003) found in vitro that daily airflow through VP with the Provox® Flush reduces biofilm formation & may increase VP device lifetime
Using the Provox® Plug

- Every patient should have the appropriate plug to temporarily stop the leakage.
- All Provox® VP have plugs except NiD

Prosthesis Selection: Considerations

- Diameter of the TEP
- Clinical indicators
- Patient independence
- Quality of voicing
- Ease of use and cleaning
- Prosthetic design to accommodate pt’s anatomic configurations
- Cost-effective prosthesis
 - Cheaper upfront cost ≠ cost effective
- Mean device lifetime
VP Device Lifetime

- Patient Dependent
- Presence of GERD/GPR
- Biofilm formation
- Oral flora
- XRT vs. no XRT
- Care and maintenance of device
- Diet
- Pressure in pharynx
- Valve opening during inhalation

Quality of Life with Hands-Free Speech

Benefits:

- Patient free to use hands while speaking
 - Can work more safely
 - Talk and hold telephone while writing a message
- Improved social acceptance
- More hygienic
Principle of Automatic Valves for Laryngectomees

- **Not everyone is a candidate!**
- **Two-way valve = bias open valve**
 - Inhalation & exhalation through the stoma
- **Pressure sensitive valve**
 - Open while breathing
 - Closed when talking due to increased pressure
 - Application of “forced exhalation” closes the valve and allows for airflow through the voice prosthesis

Therapy

- Instruction on daily care and maintenance
- Ongoing troubleshooting
- Re-assessing factors affecting TE voice
- Pulmonary Rehabilitation with Heat Moisture Exchange (HME) system
- Free-Hands Communication
- Laryngectomee supplies
- Insurance coverage
Initial Outpatient Session

• Measure TE Tract Length (if indicated)
• Check VP length and cleanliness (if primary placement done)
• Teach what to do in case of prosthetic dislodgement
• Instruct on care/use/maintenance of TE voice prosthesis
• Focus on appropriate digital occlusion
• Re-assess heat & moisture exchange (HME) use
• Set up f/u visit in 7-10 days

Subsequent Outpatient Tx Sessions

• Resize TE tract if indicated
• Work on obtaining fluent TE voice, good digital occlusion, adequate care and HME use
• Re-instruct on proper care/use/maintenance of TE prosthesis
• Reassess HME attachment use and function
• Continuous follow up until patient is independent
• Fit with FreeHands valve if appropriate
• Total rehabilitation of these patients goes beyond just providing products and changing prostheses.
Final Outcomes

- Video 13

Conclusions

- Ultimately, functional success rests on the expertise and familiarity of the speech pathologist with head and neck cancer patients.

- Not every patient does it the same way!