Welcome to this SpeechPathology.com Live Expert e-Seminar!

Constraint Induced Language Therapy for Aphasia

Presented By:
Anastasia Raymer, Ph.D.

Moderated By:
Amy Hansen, M.A., CCC-SLP, Managing Editor, SpeechPathology.com

Please call technical support if you require assistance
1-800-242-5183

Live Expert eSeminar

ATTENTION! SOUND CHECK!
Unable to hear anything at this time?
Please contact Speech Pathology for technical support at 800 242 5183

TECHNICAL SUPPORT
Need technical support during event?
Please contact Speech Pathology for technical support at 800 242 5183
Submit a question using the Chat Pod - please include your phone number.

Earning CEUs

EARNING CEUS
• Must be logged in for full time requirement
• Must pass short multiple-choice exam

Post-event email within 24 hours regarding the CEU exam (ceus@speechpathology.com)
• Click on the “Start e-Learning Here!” button on the SP homepage and login.

• The test for the Live Event will be available after attendance records have been processed, approximately 3 hours after the event ends!
• Must pass exam within 7 days of today
• Two opportunities to pass the exam
Peer Review Process

Interested in Becoming a Peer Reviewer?

APPLY TODAY!

- 3+ years SLP Clinical experience
 Required

- Contact: Amy Natho at anatho@speechpathology.com

Sending Questions

Type question or comment and click the send button

Download Handouts

Click to highlight handout

Click Save to My Computer
Constraint Induced Language Therapy for Aphasia

Anastasia Raymer, Ph.D.

Department of Communication Disorders & Special Education
Old Dominion University, Norfolk, VA

Acknowledgments:

Leora Cherney, Rehabilitation Institute of Chicago

Janet Patterson, Cal State University Hayward

Tobi Frymark, Tracy Schooling, & Rob Mullen, American Speech-Language-Hearing Association

Principles of Evidence Based Practice (Sackett et al., 2000)

clinical expertise

clinical decision-making

scientific evidence

patient values
Experience-dependent Neuroplasticity

An enriched experience changes the brain
(Rosenzweig & Bennett 1996; Petrosini et al., 2009)

We must understand ways to amplify the experiences in therapy to maximize benefits and minimize counterproductive effects

Principles of Neuroplasticity:
Animal Models
Kleim & Jones, JSLHR 2008

• Use it or Lose it: degradation of function (and neural representation) may occur with disuse
• Use it and Improve it: training can lead to enhancement of a function (and neural correlates)
• Specificity: the nature of the training experience influences the functional changes
• Repetition Matters: much repetition necessary
• Intensity Matters: intensive training necessary
Principles of Neuroplasticity:
Animal Models
Kleim & Jones, JSLHR 2008

• Time Matters: differential effects over recovery
• Salience Matters: experience must be meaningful
• Age Matters: younger is better
• Transference: training of one behavior can generalize to other behaviors
• Interference: training on one behavior can impede improvement of another

<table>
<thead>
<tr>
<th>Dependent Variables: Outcome Measures</th>
<th>Acquisition</th>
<th>Generalization/Transference</th>
<th>Interference</th>
<th>Maintenance</th>
<th>Neural Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intensity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neural Conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Raymer et al., 2008

Principles of experience-dependent plasticity in aphasia rehabilitation

• Use it to improve it
• Intensity matters
 Kleim & Jones, 2008

The case of Constraint Induced Aphasia Therapy (CILT)
 Pulvermuller et al 2001
Learned non-use hypothesis
Taub, Uswatte & Elbert (2002)
Monkeys with de-afferented limbs

Overcoming Learned Nonuse
Taub, Uswatte & Elbert (2002): restrained monkey’s good limb and forced use of impaired limb

Constraint Induced Movement Therapy
Taub et al 1994
Hakkennes & Keating 2005

(Mark & Taub, 2004)
Constraint Induced Language Therapy—CILT
Pulvermuller et al. 2001

- Forced verbal language use
 - Verbalization required; Compensatory strategies prohibited

- Intensive treatment schedule
 - 3 hrs/day 5 days/week 2 weeks
 - Massed practice

- Shaping verbal responses
 - Begin with words or short phrases
 - Move to longer and more complex utterances
 - Barrier games
 - Go Fish-like activity: pictures selected for individual participants; response components predetermined

Constraint Induced Language Therapy (CILT)
(Pulvermuller et al., Stroke, 2001)

Barrier activity with dyad of patients
Verbal games

Compared intensive CILT and traditional nonintensive therapy

Results: Forced language group > traditional tx group in overall language battery, auditory comp and naming

Are the results due to forced language use or intensive treatment schedule?

Forced Language Use?
CILT versus PACE: Intensive
Maher et al. JINS 2006

CILT: N = 4 PACE: N = 5

TX: 4 days/week, 3 hours/day, 2 weeks = 24 total TX hours

WAB improved: 3/4 CILT, 1/5 PACE
BNT improved: 3/4 CILT, 0/5 PACE
ANT improved: 2/4 CILT, 1/5 PACE

*Intensity also plays a role
ASHA N-CEP (National Center for Evidence Based Practice): Facilitating Series of Evidence Based Systematic Reviews

• criteria for prioritizing topics
 – Incidence/prevalence
 – Risk/potential harm
 – Public policy or reimbursement issues
 – Importance to clients consumers
 – Answerable question
 – Representation of diverse areas of practice
 – Existence of other systematic reviews/guidelines
 – Level of interest among ASHA membership
 – Existence of studies currently underway

First Systematic Review:
Constraint Induced Language Therapy (CILT) for Aphasia (Cherney et al., 2008) (updated 2010)

• Public policy or reimbursement issues
 – Of considerable importance to funding agencies, third party payors
 – Several CILT clinics have been established across the country
 – Private clinics charging out-of-pocket

• Importance to clients/consumers
 – CILT has been (incorrectly) described as the only aphasia treatment with evidence
 – It has an internet presence

EBSR Committee
Volunteer Evidence Panel
Leora Cherney, Ph.D., CCC-SLP, BCNCD-A
Rehabilitation Institute of Chicago
Chicago IL
Janet Patterson, Ph.D., CCC-SLP
VA Medical Center,
Hayward CA
Anastasia Raymer, Ph.D., CCC-SLP
Old Dominion University
Norfolk VA

Staff: ASHA’s National Center for Evidence-Based Practice in Communication Disorders
Tobi Frymark, M.A., CCC-SLP
Tracy Schooling, M.A., CCC-SLP
Beverly Wang, B.S.
Cherney et al 2008: ASHA EBSR Process

• Identify evidence panel
 – selected by N-CEP based on
 • input from ASHA Special Interest Divisions
 • input from ASHA National Office staff
 • review of who has published on this topic
• Define clinical questions & search parameters
• Conduct literature search
 – NCEP Information manager
• Critically appraise the evidence
• Evaluate & synthesize evidence
• Write EBSR summary

Framing the clinical question

 рол Two principles of CILT are intertwined
 • Constraint
 • Intensive/Massed practice

rol PICO (Population-Intervention-Comparison-Outcome)
 • P = stroke-induced chronic aphasia, stroke-induced acute aphasia
 • I = CILT and intensive aphasia treatment
 • C = contrasting treatment or no treatment
 • O = measures of language impairment, communication activity/participation (WHO ICF)

CILT Questions

• For stroke-induced chronic aphasia, what is the influence of constraint-induced language therapy on measures of language impairment? measures of communication activity/participation?
• For stroke-induced acute aphasia, what is the influence of constraint-induced language therapy on measures of language impairment? measures of communication activity/participation?
• For stroke-induced chronic aphasia, what treatment outcomes are maintained following constraint-induced language therapy?
Intensity Questions

• For stroke-induced chronic aphasia, what is the influence of treatment intensity on measures of language impairment? measures of communication activity/participation?

• For stroke-induced acute aphasia, what is the influence of treatment intensity on measures of language impairment? measures of communication activity/participation?

• For stroke-induced chronic aphasia, what treatment outcomes are maintained following intensive language treatment?

Search Parameters: Original Review

• Inclusion:
 – Peer-reviewed literature from 1990 to 2006
 – Written in English
 – Adults ages 18 years or older
 – Stroke-induced aphasia
 – Direct comparison of CILT with other treatment approach or no treatment; or direct comparison of two treatment intensities

• Exclusion:
 – Studies including individuals with underlying cognitive deficits
 – Other primary medical diagnoses
 – Pharmacological intervention as comparison treatment
 – Mixed treatments

Search Parameters: Updated 2010 Review

• Same as earlier review

• Peer-reviewed literature from
 January 2006 – August 2010
Of 26 studies rated, 18 examined CILT

2008 Review:
Pulvermuller et al., 2001
Meinzer et al., 2004
Meinzer et al., 2005
Pulvermuller et al., 2005
Maher et al., 2006

2010 Update:
Breier et al., 2006
Meinzer et al., 2006
Breier et al., 2007
Meinzer et al., 2007
Meinzer, Streiftau, & Rockstroh, 2007
Meinzer et al., 2008
Richter et al., 2008
Szaflarski et al., 2008
Breier et al., 2009
Farooqi-Shah & Virion, 2009
Goral & Kempler, 2009
Meinzer et al., 2009
Kirmess & Maher, 2010

Rating the Evidence

• ASHA's Levels of Evidence Scheme
 – Developed by ACEBP & N-CEP
 – Evaluates state of the evidence by methodological quality & stage of research
• 2 reviewers clinically sifted studies for inclusion
 – Blind reviewers
 – 91% agreement
• 2 reviewers appraised studies for quality
 – Blind reviewers
 – One article authored by committee member (AMR) was reviewed by two other reviewers (JP, LC)
 – All disagreements resolved by consensus
• 3 reviewers determined stage of research

Evaluating the Evidence - Methodological Quality

ASHA Levels of Evidence Scheme (Mullen, 2007)
Similar to PEDRO scale (Maher et al., 2003)

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Highest Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Design</td>
<td>Controlled trial</td>
</tr>
<tr>
<td>Blinding</td>
<td>Assessors blinded</td>
</tr>
<tr>
<td>Sampling</td>
<td>Random sample adequately described</td>
</tr>
<tr>
<td>Group Comparability/</td>
<td>Groups comparable at baseline or</td>
</tr>
<tr>
<td>Participants described</td>
<td>Participants well described</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Valid & reliable outcome measure*</td>
</tr>
<tr>
<td>Protocol Description</td>
<td>Treatment protocol described**</td>
</tr>
<tr>
<td>Treatment Fidelity</td>
<td>Evidence provided</td>
</tr>
<tr>
<td>Significance</td>
<td>p value reported/calculable</td>
</tr>
<tr>
<td>Precision</td>
<td>Effect size & confidence interval</td>
</tr>
<tr>
<td>Intention to Treat</td>
<td>Analyzed by intention to treat</td>
</tr>
<tr>
<td>(controlled trials only)</td>
<td></td>
</tr>
</tbody>
</table>
highest quality indicators across 26 studies (CILT + Intensity) of the EBSR

- Comparable groups/ Participants well-described: 25
- Valid outcomes/Protocol described: 24
- Significance calculable: 24
- Precision calculable: 19
- Design: Controlled trial: 7
 - Intention to treat: 5/7
- Assessor blinded: 6
- Treatment fidelity: 5
- Random sample well-described: 2

Quality Scores & Effect Sizes (d) CILT Studies

Impairment Outcomes: Aphasia Batteries

<table>
<thead>
<tr>
<th>Score</th>
<th>Outcome measure</th>
<th>p</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meinzer et al., 2007b</td>
<td>7/10 AAT Profile</td>
<td><.0001</td>
<td>.45</td>
</tr>
<tr>
<td>Maher et al., 2006</td>
<td>6/9 WAB AQ</td>
<td>.004</td>
<td>1.01</td>
</tr>
<tr>
<td>Pulvermuller et al., 2001/6/9</td>
<td>AAT Profile</td>
<td>.04</td>
<td>2.18</td>
</tr>
<tr>
<td>Meinzer et al., 2005</td>
<td>5/9 AAT Profile</td>
<td><.0001</td>
<td>1.63</td>
</tr>
<tr>
<td>Breier et al., 2006</td>
<td>5/9 WAB AQ</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>Kirmess & Maher, 2010</td>
<td>5/9 NGA</td>
<td>.34</td>
<td></td>
</tr>
<tr>
<td>Meinzer et al., 2004</td>
<td>4/8 AAT Profile</td>
<td><.0001</td>
<td>.34</td>
</tr>
<tr>
<td>Faroqi-Shah et al., 2009</td>
<td>4/9 WAB AQ</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>Meinzer et al., 2008</td>
<td>4/9 AAT Profile</td>
<td><.0001</td>
<td>.45</td>
</tr>
<tr>
<td>Meinzer et al., 2009</td>
<td>4/9 AAT Profile</td>
<td><.001</td>
<td>.34</td>
</tr>
</tbody>
</table>

Impairment Outcomes: Naming Tests

<table>
<thead>
<tr>
<th>Score</th>
<th>Outcome measure</th>
<th>p</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meinzer et al., 2007b</td>
<td>7/10 AAT Naming</td>
<td><.01</td>
<td>.31</td>
</tr>
<tr>
<td>Maher et al., 2006</td>
<td>6/9 BNT</td>
<td>.006</td>
<td>.16</td>
</tr>
<tr>
<td>Pulvermuller et al., 2001/6/9</td>
<td>AAT Naming</td>
<td><.02</td>
<td>1.12</td>
</tr>
<tr>
<td>Breier et al., 2006</td>
<td>5/9 BNT</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>Faroqi-Shah et al., 2009</td>
<td>4/9 BNT</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>Kirmess & Maher, 2010</td>
<td>5/9 NGA Naming</td>
<td>.03</td>
<td>.85</td>
</tr>
<tr>
<td>Meinzer et al., 2008</td>
<td>4/9 AAT Naming</td>
<td><.004</td>
<td>.34</td>
</tr>
<tr>
<td>Pulvermuller et al., 2005/3/8</td>
<td>AAT Naming</td>
<td>.05</td>
<td>.25</td>
</tr>
<tr>
<td>Meinzer et al., 2007</td>
<td>3/9 AAT Naming</td>
<td>n.s.</td>
<td></td>
</tr>
</tbody>
</table>
Quality Scores & Effect Sizes (d) CILT Studies

Impairment Outcomes: Auditory Comprehension

<table>
<thead>
<tr>
<th>Score</th>
<th>Outcome measure</th>
<th>p</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meinzer et al., 2007b</td>
<td>7/10 Token Test AAT Comprehension</td>
<td><.008</td>
<td>.31</td>
</tr>
<tr>
<td>Pulvermuller et al., 2006/9</td>
<td>TT AAT Comprehension</td>
<td><.04</td>
<td>.92</td>
</tr>
<tr>
<td>Breier et al., 2006</td>
<td>5/9 WAB Aud Comp</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>Kimmess & Maher, 2010</td>
<td>5/9 NGA Aud Comp</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>Meinzer et al., 2008</td>
<td>4/9 AAT Comprehension</td>
<td><.008</td>
<td>.22</td>
</tr>
<tr>
<td>Richter et al., 2008</td>
<td>4/9 Token Test</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>Szafiarski et al., 2008</td>
<td>4/9 BDAE Aud Comp</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>Pulvermuller et al., 2005/8</td>
<td>AAT Token Test</td>
<td>.03</td>
<td>.25</td>
</tr>
<tr>
<td>Meinzer et al., 2006</td>
<td>3/9 Token Test errors</td>
<td>n.s.</td>
<td>AAT Comprehension</td>
</tr>
</tbody>
</table>

Activity/Participation Outcomes: Communication Log/Rating Scales

<table>
<thead>
<tr>
<th>Score</th>
<th>Outcome measure</th>
<th>p</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulvermuller et al., 2001</td>
<td>6/9 Comm Activity Log Patient.</td>
<td><.001</td>
<td>3.77</td>
</tr>
<tr>
<td>Meinzer et al., 2005</td>
<td>5/9 Comm. Effect. Index</td>
<td><.0001</td>
<td>1.86</td>
</tr>
<tr>
<td>Quantity Pt.</td>
<td><.0001</td>
<td>1.99</td>
<td></td>
</tr>
<tr>
<td>Quantity Fam.</td>
<td><.0001</td>
<td>2.35</td>
<td></td>
</tr>
<tr>
<td>Comp. Pt.</td>
<td><.01</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>Comp. Fam.</td>
<td><.02</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>Goral & Kempler, 2009</td>
<td>5/9 Social communication</td>
<td>.001</td>
<td>3.43</td>
</tr>
</tbody>
</table>

Activity/Participation Outcomes: Connected Speech Measures

<table>
<thead>
<tr>
<th>Score</th>
<th>Outcome measure</th>
<th>p</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maher et al., 2006</td>
<td>6/9 story retelling # wds</td>
<td>.72</td>
<td></td>
</tr>
<tr>
<td># utterances</td>
<td>.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean length utt.</td>
<td>.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breier et al., 2006</td>
<td>5/9 % CIUs Dual card task</td>
<td><.02</td>
<td>.57</td>
</tr>
<tr>
<td>Accuracy task</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goral & Kempler, 2009</td>
<td>5/9 Narrative – words</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>Kirmess & Maher, 2010</td>
<td>5/9 Dual card task requests</td>
<td>.93</td>
<td></td>
</tr>
<tr>
<td>Breier et al., 2009</td>
<td>4/9 % CIUs Dual card task</td>
<td><.051</td>
<td>.06</td>
</tr>
<tr>
<td>Faraji-Shah et al., 2009</td>
<td>4/9 Cinderella Sentences tense</td>
<td>.059</td>
<td>.61</td>
</tr>
<tr>
<td>Szafiarski et al., 2008</td>
<td>4/9 Fable Retell – words</td>
<td>.051</td>
<td>.31</td>
</tr>
<tr>
<td>utterances</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overall Findings - CILT

- 18 studies with 202 participants
- Language impairment measures: CILT resulted in some positive changes – overall aphasia quotients and naming scores; somewhat less for auditory comprehension
- Communication activity/participation measures: mixed results; some large positive favoring CILT; some large positive favoring comparison treatment
- Data available primarily for chronic aphasia. No data speak to the effects of CILT in acute aphasia; some data for subacute aphasia (Kirmess & Maher).
- Maintenance of CILT effects: reported to lead to positive changes; no effect sizes calculable.

CILT and Treatment Intensity

- Observations suggest that there can be complex interactions among intensity of treatment schedule, type of treatment, and type of outcome measure.

Future Research

- Across studies, majority of participants were nonfluent and moderately impaired; therefore generalizability of results is limited for individuals with fluent aphasia and individuals with mild and severe aphasia.
- Future studies need to tease out more carefully the impact of constraint and intensity on outcome.
- Future research must be designed to ensure that they are of highest quality.
- Future studies should address issues of effectiveness and cost effectiveness.
Future Research

- Lillie & Mateer 2006 expressed interest in applying principles of CI in other cognitive domains such as attention and memory
- Overcome ‘cognitive nonuse’ by restraining strategies and forcing cognitive mechanism to function
- Yet to be investigated

Neuroplastic Changes: Post Intensive CILT

Left Perilesional Changes – improved patterns of activation
- Meinzer et al 2004 MEG Reduced left perilesional slow wave activity
- Meinzer et al. 2008 fMRI + MEG – Increased activity in regions of pre-tx slow wave activity
- Menke et al. 2009 fMRI – some increases in perilesional temporal regions
- Left Posterior changes
 - Pulvermuller et al 2005 EEG

Neuroplastic Changes: Post Intensive CILT

Right Frontal changes
- Pulvermuller et al 2005 EEG – increased activity
- Richter et al 2008 fMRI – reduced activity correlated with tx success
- Meinzer et al. 2009 MEG – reduced activity

Right Temporal changes – some increases, some decreases
- Menke et al. 2009 fMRI

No changes
- Breier et al 2006 MEG – No signif associations post tx
What determines neural reorganization in left perilesional vs right hemisphere?

- Smaller left hemisphere lesions allow for perilesional mediation
- Larger left hemisphere lesions require more right hemisphere mediation
 \[\text{Crosson et al 2007}\]

- Neural mediation may change over time
 - Acute – little activation of perilesional or right
 - Subacute – more right hemisphere mediation
 - Chronic – more left perilesional mediation
 \[\text{Saur et al 2006}\]

Translational Neuroscience in Aphasia

We have applied many principles of neuroplasticity to enrich our therapeutic repertoire and evidence base for patients with aphasia

Most research mainly in proof-of-principle stage, with fewer RCTs (7% of studies - Togher et al. 2009)

We need to continue forward to optimize our treatments, lead to the best randomized clinical trials, and best language rehabilitation services possible for our patients